
45

Keyboard Snooping from Mobile Phone Arrays with Mixed
Convolutional and Recurrent Neural Networks

TYLER GIALLANZA, Darwin Deason Institute for Cybersecurity, USA
TRAVIS SIEMS, Darwin Deason Institute for Cybersecurity, USA
ELENA SHARP, Darwin Deason Institute for Cybersecurity, USA
ERIK GABRIELSEN, Darwin Deason Institute for Cybersecurity, USA
IAN JOHNSON, Darwin Deason Institute for Cybersecurity, USA
MITCHELL A. THORNTON, Darwin Deason Institute for Cybersecurity, USA
ERIC C. LARSON, Darwin Deason Institute for Cybersecurity, USA

The ubiquity of modern smartphones, because they are equipped with a wide range of sensors, poses a potential security
risk—malicious actors could utilize these sensors to detect private information such as the keystrokes a user enters on a nearby
keyboard. Existing studies have examined the ability of phones to predict typing on a nearby keyboard but are limited by the
realism of collected typing data, the expressiveness of employed prediction models, and are typically conducted in a relatively
noise-free environment. We investigate the capability of mobile phone sensor arrays (using audio and motion sensor data) for
classifying keystrokes that occur on a keyboard in proximity to phones around a table, as would be common in a meeting.
We develop a system of mixed convolutional and recurrent neural networks and deploy the system in a human subjects
experiment with 20 users typing naturally while talking. Using leave-one-user-out cross validation, we find that mobile phone
arrays have the ability to detect 41.8% of keystrokes and 27% of typed words correctly in such a noisy environment—even
without user specific training. To investigate the potential threat of this attack, we further developed the machine learning
models into a realtime system capable of discerning keystrokes from an array of mobile phones and evaluated the system’s
ability with a single user typing in varying conditions. We conclude that, in order to launch a successful attack, the attacker
would need advanced knowledge of the table from which a user types, and the style of keyboard on which a user types. These
constraints greatly limit the feasibility of such an attack to highly capable attackers and we therefore conclude threat level of
this attack to be low, but non-zero.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Computing methodologies
→ Neural networks; • Computer systems organization→ Sensors and actuators;

Additional Key Words and Phrases: Keyboard Snooping, Machine Learning, Security

ACM Reference Format:
Tyler Giallanza, Travis Siems, Elena Sharp, Erik Gabrielsen, Ian Johnson, Mitchell A. Thornton, and Eric C. Larson. 2019.
Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent Neural Networks. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 3, 2, Article 45 (June 2019), 22 pages. https://doi.org/10.1145/3328916

Authors’ addresses: Tyler Giallanza, Darwin Deason Institute for Cybersecurity, USA, tgiallanza@smu.edu; Travis Siems, Darwin Deason
Institute for Cybersecurity, USA; Elena Sharp, Darwin Deason Institute for Cybersecurity, USA; Erik Gabrielsen, Darwin Deason Institute
for Cybersecurity, USA; Ian Johnson, Darwin Deason Institute for Cybersecurity, USA; Mitchell A. Thornton, Darwin Deason Institute for
Cybersecurity, USA; Eric C. Larson, Darwin Deason Institute for Cybersecurity, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2474-9567/2019/6-ART45 $15.00
https://doi.org/10.1145/3328916

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

https://doi.org/10.1145/3328916
https://doi.org/10.1145/3328916

45:2 • T. Giallanza et al.

1 INTRODUCTION
The ubiquity of mobile phones and the Internet of Things raises considerable security concerns because the
embedded sensors and computational capabilities of these devices could be re-purposed for surveillance. Since
smartphones are already ubiquitous and contain a wide variety of sensors, they are especially valuable targets for
sensor-based data snooping. This is exemplified by a number of works in the ubiquitous computing community:
Yu et al. demonstrated how mobile phones could be used to infer handwritten letters [38]. Ali et al. showed that
WiFi routers could be used to identify typing on nearby keyboards [3]. Lu et al. used smartwatch motion sensors
to snoop typed passwords of a user’s mobile device [18].

In this research, we investigate the feasibility of using smartphones for sensor-based data snooping of keyboard
typing. Specifically, we aim to determine if the sensors in an array of mobile phones are able to predict what a
user is typing on a keyboard and under what conditions an attacker could successfully deploy such an attack.
To simulate a realistic scenario, we designed an IRB-approved human subject experiment to generate sensor
data from mobile phones while participants typed on a nearby keyboard. We use a number of different phone
models, keyboards, and tabletop positions; we encourage background noise (over 40% of keystrokes occur while
participants are speaking); and we do not restrict our participants to a limited typing vocabulary or typing speed,
thus testing our system in a realistic situation. We conclude that smartphone sensors, particularly when arrayed,
have the ability to detect typing with surprising accuracy, achieving 41.8% accuracy on our dataset without
any user-specific calibration. To achieve this accuracy, we employ cascaded convolutional and recurrent neural
networks trained upon the audio data of up to eight mobile phones. To investigate the generalizability of the
model we further develop a prototype system and deploy it in online experiments. We assume the threat model
is such that an attacker can install an application on an array of users’ phones or in some way access motion
and audio data from the phones on a tabletop. An example attack scenario is an attacker who wishes to gain
information about the contents of notes typed during a conference-style meeting. Further investigations are
conducted to discern the realism of other factors such as: Does the attacker need physical access to the room and
table in which an attack will take place? Is known phone location critical for carrying out the attack? We show
that the deployed system performs well when in conditions similar to training data collection, but significantly
drops in performance if the table and style of keyboard are not part of the training data. We therefore conclude
that, while the attack is possible, it is only feasible for sophisticated attackers.
The contributions of our work are as follows:
(1) We present an architecture for segmenting keystrokes and extracting physical keyboard dynamics from

mobile phone sensors arrays with convolutional neural networks.
(2) We design a recurrent neural network architecture for translating sequences from the convolutional

network into typed phrases.
(3) We evaluate our designs by creating a human subjects experiment that systematically changes keyboard

type, location, and varies the ambient noises in the room.
(4) We develop a real-time prototype and evaluate the deployed prototype in additional experiments varying

the room, table, keyboard style, and phone locations to values unseen in the training data.
We believe these results are state-of-the-art and best known in the publicly available scientific literature.

Compared to the results that are reported from other researchers, our data was collected in a realistically noisy
environment and a more practical setting. Also, the past results from other researchers utilized high-quality
sensors (microphones, etc.) whereas we use commodity off-the-shelf sensors on standard smartphones.

2 RELATED WORK
Many researchers have investigated the ability for sensors to detect information they were not designed to sense.
Specifically, related research has detected keystrokes, handwriting, and passwords from a variety of devices

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:3

including microphones, smartwatches, and mobile phones. We design our experiment to overcome the limitations
in the existing research; namely, we focus on collecting realistic data by preserving noise in data collection and
collecting natural typing data rather than restricting typists to a known vocabulary.

2.1 Eavesdropping Attacks
As mobile devices become more prevalent and more sensor-rich, more research has utilized commercial mobile
devices for eavesdropping. Many of these studies utilize mobile device sensors to extract information entered on
the mobile device itself. PIN Skimmer, for example, utilizes camera and microphone data to correctly guess more
than 50% of PINs after 5 attempts [32]. TouchLogger [4] and TapLogger [37] utilize motion sensor data to extract
PINs entered on mobile phones. These methods have been shown to work on mobile phones of varying sizes
and hardware configurations with accuracy 81 times better than random [5]. The reliance on motion data rather
than camera or microphone data is that motion data does not require obtaining explicit user permissions, thus
increasing the feasibility of the attack scenario. It has been shown that users are often not aware of these threats
and are thus more vulnerable to this kind of attack [21]. Similarly, Simon et al. detected pre-defined sentences and
identified the authors of anonymous messages with a mobile application that did not require special permissions
[33]. Furthermore, Yu et al. used mobile phone audio and accelerometer sensors to detect nearby handwritten
words, achieving at best 60% word-level accuracy on words chosen from a fixed vocabulary and data generated in
a noise-controlled environment [38].

Smartwatch devices have also demonstrated vulnerabilities to side channel attacks. Recently, Lu et al. demon-
strated that sensors embedded in smartwatches can be used to detect passwords entered within 20 attempts [18].
The system uses motion data to detect both tapped and swiped passwords on smartwatches, generalizing across
different smartwatch models.
Our work is similar to these studies in spirit because we attempt to use sensors from commercially available

mobile phones rather than specialized equipment for our attack. However, we focus on detecting keystrokes
typed on a keyboard physically separate from the mobile device. This introduces difficulties caused by distance
not present when collecting data from the device that is being attacked.

2.2 Keystroke Detection
Many researchers have investigated the use of audio sensors to perform keystroke recognition. Zhuang et al.
used a hidden Markov model on cepstrum features extracted from audio data collected by a microphone to
achieve 94% character-level accuracy [39]. However, these results occur using a mechanical keyboard in a noise
free environment. Additionally, the system is trained and tested on the same person using the same keyboard
in a similar noise environment. Kelly et al. achieved similar results using audio analysis from studio-quality
microphones recording in a sound-proof environment [16]. These studies demonstrate the ability for audio-based
systems to detect keystrokes but employ studio-quality microphones and noise-controlled environments.

In the ubiquitous computing community, Ali et al. showed that wifi routers can be used to facilitate keystroke
detection, achieving about 93.5% accuracy in a human subjects trial [3]. Despite the high accuracy in this study,
there are a number of drawbacks, including a low-noise experimental setup, user-specific training, and lack of
variation in the keyboard and router used.

In terms of using mobile devices for keystroke detection, Liu et al. detected keystrokes via sensors on a
smartwatch worn by the typist [17]. This achieved 57% word-level accuracy on the top guess, but the dictionary
used was greatly domain-restricted to the same topic the subject typed about. Marquardt et al. used mobile phone
accelerometers to achieve 40% accuracy detecting keystrokes, but limited the vocabulary of the typists to a small
dictionary of known words and limited the typing rate of the users [20].

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:4 • T. Giallanza et al.

Much of the existing work in detecting keystrokes leverages specialized hardware such as high-quality
microphones. While we agree that these methods can achieve high accuracy and good performance, in this paper
we are concerned with investigating mobile devices in particular because an attacker that can install malicious
applications on a mobile device can easily disguise their surveillance and would not require physical access to a
room prior to surveillance. The existing research in keystroke detection from mobile devices is limited in terms
of generalizability and collection of realistic data. Smartwatch-based attacks are limited because smartphones are
much more prevalent. Furthermore, existing studies utilizing mobile phones restricted the typists’ dictionary,
trained and tested on the same typists, and/or restricted the amount of background noise. To the best of our
knowledge, no researchers have achieved results by systematically varying keyboard type and location, and
allowing ambient noise with a large number of participants to generate natural typing data.

3 SYSTEM DESIGN
In order to detect and classify each keystroke, we require features from the signal data that help delineate each
keystroke. These differences are best intuited using an independent source-filter model, which gained popularity
in the speech community for describing the process of speech production [8]. In this model, the excitation source
and filter that alters the excitation are independent of one another. For keystroke detection, the excitation source
is the key movement and strike against the keyboard, which create sound waves and motion. The filter that
manipulates this excitation consists of any medium that the signal travels through before arriving at each mobile
phone on the table. The transfer function of the path between the excitation and each mobile phone determines
how the signal is changed once it is sensed. We can regard the excitation and filtering processes as independent
by assuming the force of the keystroke does not alter the position or contact points between the keyboard and
the table. Using the source-filter model, we can expect the signals from each keystroke to be slightly different
depending on a number of factors. The excitation signal might be affected by (1) the mechanical structure of the
key that changes audibility or vibration when pressed, (2) the strike angle at which the user hits the key, and (3)
how long the key is depressed. The filter between each phone and source is affected by (1) the angle between the
key strike and phone (2) the distance between the phone and each strike, and (3) the material in which the signal
travels. Each of these factors assist in identifying the exact keystroke because the path between each key and
phone is slightly different and the user strikes each key at a different angle and force. As such, we expect that
many confusions will occur between keys that are physically close because they are likely to have similar, but
not identical, transfer functions. Moreover, the excitation signal can be affected by the user’s typing style and
consistency. For our machine learning model to function properly, these differences must produce keystroke
signatures with enough specificity to delineate them, even in the presence of other sound and motion signals
from the environment.
We use a mixed convolutional and recurrent neural network architecture to detect keystrokes from phone

sensor data. Because we expect the keystrokes to produce identifiable sound and vibration signals, we focus on
the microphone sensor, the accelerometer sensor, and combining both in a multi-modal network. Our overall
processing pipeline is as follows: first, we combine the sensor data generated by the phones; second, we window
the signal and extract features for processing; third, we determine which windows contain keystrokes and which
do not by using a convolutional neural network; fourth, we analyze windows that contain keystrokes with a
convolutional neural network to predict which key is pressed; and fifth, we refine the predictions with a recurrent
neural network and language model.
The overall system is composed of three parts: the keystroke detector, the convolutional keystroke classifier,

and the recurrent keystroke classifier. The keystroke detector and the convolutional keystroke classifier share
convolutional layers, making them two different modes of the same network. The keystroke detector is trained

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:5

on all windows from the source signal, including windows that do contain keystrokes and windows that do not
contain keystrokes, and the convolutional keystroke classifier is only trained on windows that contain keystrokes.

At testing time, the keystroke detector is tested on all windows from the source signal, returning the windows
that contain keystrokes. The convolutional classifier is then tested on the windows that the keystroke detector
returned, whether or not those windows do in fact contain a keystroke.

3.1 Data Preprocessing
Before any further processing can take place, the signals from multiple phones must be aligned temporally. Each
timestamp value yields sub-millisecond precision [1], but we cannot assume that all devices share the same base
time synchronization. Although all devices use NTP (Network Time Protocol) to synchronize their base system
time to server-distributed time [23], each device’s base time varies slightly due to clock drift [34]. Since each
device is recording the same signal, we attempt to synchronize the base time of all devices by comparing the
signals to each other.

Specifically, we perform a cross-correlation on the absolute value of the normalized audio signal for each phone
over 15-second time windows. The 15-second window ensures that the phones will be synchronized provided that
their base system times are within 15 seconds of each other before synchronization. Due to the varying quality of
the phones’ microphones, the audio signals do not always perfectly correlate. To remedy this issue, we perform
the cross-correlation over 20 different randomly sampled time windows, sum the correlation coefficients, and use
the index of the maximum coefficient as the amount of offset for that phone. To synchronize all of the phones, we
randomly choose one phone as the baseline signal and synchronize every other phone with the baseline phone.

3.2 Windowing
Next, we break the time aligned signals into windows. During pilot experiments, we observed that each keystrokes
had audio and motion signatures up to 200ms , but typically were less than 100ms . However, some typists begin a
new keystroke only 40ms after the previous stroke. Therefore, it is impossible to use a window to capture the
entire signal and simultaneously only one keystroke. As a tradeoff, we use windows that are 100ms long with a
step size of 25ms . We label each window with which key was pressed during that window, or a special value
indicating no key was pressed for the duration of the window. If multiple keys were pressed in the same window,
the window is labeled with the value of the first key. In particular, we label windows based on a "key down"
event. This occurs when the key is first pressed by the user (as opposed to when the key is released by the user);
we use key down events because they generate the strongest signal (based upon our observations).

This windowing strategy allows us to detect any keystrokes that occur at least 25ms apart. Keys that occur
within 25ms of each other cannot be detected.

3.3 Feature Extraction
We use three variations of audio data as features to our model: unprocessed audio data, fast Fourier transform
based features (FFT-based), and Mel-frequency scaled Cepstral Coefficients (MFCCs). We choose these features
because they are valuable for separating the source and filter responses in the signal data. MFCCs, in particular,
change convolution to addition in the Cepstral domain, whichmay help separate keystrokes with similar excitation
signals but different filtering paths and vice-versa. Before extracting FFT-Based features and MFCCs, we apply
a pre-emphasis filter to the signal. The pre-emphasis filter has been shown to boost classification results for
MFCCs in the automatic speech recognition community [24]. We use a infinite impulse response pre-emphasis
filter coefficient of 0.97. Moreover, we also apply a hamming window to our time series windows before further
frequency analysis to mitigate spectral leakage into other bands.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:6 • T. Giallanza et al.

FFTs divide signals into frequency components in a computationally efficient way [35]. In our analysis, we
use an FFT size of 512 and sampling rate of 44.1 kHz. Thus, our frequency resolution is about 86 Hz per bin. By
applying the FFT in a windowed manner, we can calculate the short time Fourier transform (STFT) of the signal
over time. This allows us to work with the frequency domain representation of the original signal directly, forcing
the convolutional neural network to interpret the signal based on its frequency content. In our implementation
we use a sliding window of size 25ms with an overlap of 10ms . Thus, we calculate the FFT of the signal every
15ms , about 67 times per second, and the number of features per window is 256 (half of the FFT magnitude
spectrum). To reduce complexity of the STFT, we also average the features across frequencies mapping their
values to the Mel frequency scale. Thus the STFT features are aggregated from 256 features per time window to
26 features per time window.
MFCCs are typical features in speech processing systems because they partially mimic how the human ear

differentiates sounds [26]. MFCCs additionally condense the information found in an FFT, mapping a given
window of an FFT onto the Mel scale using a number of filters. Specifically, calculating MFCCs is as follows: Take
the FFT of a window of a signal; map the powers of the spectrum onto the Mel scale; take the log of the powers
at the Mel frequencies; take the discrete cosine transform (DCT) of the resulting logs; and use the amplitudes
of the resulting spectrum as the MFCC. We use a window size of 512 audio samples and a bank of 40 filters as
parameters for our MFCCs. Finally, we apply a sinusoidal liftering of length 22 to increase the magnitude of
higher ceps coefficients, as is common in speech recognition applications [15].

Because theMFCCs use the DCT, they have an energy compaction property that tends to place larger amplitudes
in the initial coefficients, and also tends to decrease correlation among the MFCC coefficients [27]. Historically,
this de-correlating process was beneficial to machine learning algorithms. However, with the advent of deep
learning-based feature extraction, it is unclear how necessary the use of MFCCs (or the FFT) are for pre-processing
[25]. However, the Fourier transform operation is difficult to learn and the increase in amount of required training
data and model complexity may not be warranted. As such, we employ the use of all three input features in our
deep learning model: raw audio, FFT-based, and MFCCs. Moreover, it is unclear if the biological motivations
of the MFCCs are helpful outside of automated speech recognition. That is, humans do not have the ability to
discern keystrokes audibly so there is no reason that biologically motivated operations (like Mel-scaling) would
assist in classification.
In addition to audio data, we also use various motion data as features. Specifically, we use accelerometer

data (x , y, and z sampled at 100Hz) as well as gyroscope data (x , y, and z sampled at 100Hz). Rather than use
accelerometer and gyroscope data as separate features, we combine them into one feature with six channels
(accelerometer x/y/z, and gyroscope x/y/z) to decrease model size and training time. That is, temporal filters
are applied to the motion data simultaneously much like filtering is applied in natural language processing of
sentence embeddings [14].

3.4 Keystroke Detection
Before classifying which keystrokes occurred, we first determine if keystrokes occurred (i.e., detection versus
classification). Using the extracted audio features, the raw audio, and the motion data, we apply a convolutional
neural network to the sensor data. We use a multi-modal architecture such that any combination of the four
features (FFTs, MFCCs, raw audio, and raw motion) can be used as inputs to the model. We choose a multi-modal
architecture because it is unclear which extracted features are most important for detection and classification,
therefore we use all features in our training process. Each input passes through a number of convolutional layers,
and the output of the convolutions are concatenated and passed through a number of shared dense layers. The
final dense layer predicts if the given window contains a keystroke or does not contain a keystroke.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:7

As discussed, the convolutional layers are all one dimensional convolutions. Multi-dimensional inputs like
MFCCs and motion are treated as one-dimensional along the time axis, with multiple channels. This is a common
method for analyzing frequency transformed signal data [2]. The MFCC input is 40 channeled (because we
use 40 filters when mapping to the mel scale), the motion input is 6 channeled (x, y, and z channels for both
accelerometer and gyroscope), and the raw audio and FFT inputs are both single channeled.
Each input passes through a different architecture of convolutions before being passed to the dense layers.

Each convolutional architecture contains a mix of one dimensional convolutional layers, max pooling layers,
and ADD layers. The max pooling layers perform dimensionality reduction by choosing the best performing
features in a given window [30]; we down-sample in the pooling layers by a factor of 8 for raw audio, by a factor
of 4 for motion, and by a factor of 2 for all other input features. Other down-sampling factors were investigated,
but provided similar results. The ADD layers are part of the residual block architecture as introduced in [13].
Residual blocks allow training of deeper networks that use more convolutional layers while reducing the effects
of the vanishing gradient problem, training shallow and deep layers more evenly because the “addition” operation
allows for multiple back-propagation update paths [13]. Figure 1 shows the architecture of the network.

After each input passes through convolutional layers, the result is flattened into a one dimensional array. These
arrays are concatenated for each input to the network, and the concatenated value is passed to a number of dense
layers. We use three dense layers: one with 128 nodes, one with 64 nodes, and an output layer with 2 nodes. All
layers are initialized using Glorot’s method, which helps prevent saturated neurons in early epochs [11]. The
first two layers use the ReLU activation function to help avoid the vanishing gradient problem [11], and the last
layer uses the softmax function, which outputs a score for each class such that the scores for all classes sum to
equal 1, with two classes (key/not a key).

3.5 Keystroke Classification: Convolutional Neural Network
We use the same architecture described above for keystroke detection. The convolutional network is a reasonable
choice for discerning keystrokes because of the source-filter model that explains differences in sensed keystrokes,
presented earlier. It is possible (but not guaranteed) that the convolutions can learn to separate the excitation and
filtering of the sensed signal. In general, most CNNs can adapt their filter kernels to identify fine structures in
the sensed data that it identifies as discerning.
The input features pass through the same convolutional layers that have already been trained for keystroke

detection. In this way, the convolutional layers are treated as “feature extraction” layers that reduce the dimen-
sionality of the data. After the convolutional layers, however, we employ a different set of dense layers to perform
keystroke classification. We use three dense layers: one with 256 nodes, one with 128 nodes, and one with n
nodes for n output classes.
This training method using shared convolutional layers with different dense layers for each classification

task is often known as multi-task learning and often helps to prevent over fitting [6, 7, 10, 29]. All layers are
initialized using Glorot’s method, the first two layers use the ReLU activation function, and the output layer uses
the softmax function as described above.
Because the CNN does not receive any information about the keystrokes before or following the keystroke

to which it is currently classifying, the CNN model must classify the keystroke based solely upon the observed
signal data. In this way, the CNN can be thought of as a physical keystroke dynamics model. We would expect
such a model to have similar classification probabilities for keystrokes that occur frequently and keys that are
located near one another on the keyboard because they generate similar sensor signatures (as predicted by the
source-filter model of the process). While the keystroke dynamics are important for classification, other factors
should also be taken into account such as the time between consecutive keystrokes, the likelihood of the previous

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:8 • T. Giallanza et al.

keystroke classified, and others. These knowledge sources are better captured by a sequential classification
procedure like a recurrent neural network, discussed next.

3.6 Keystroke Classification: Recurrent Neural Network

Fig. 1. Convolutional network architectures used for keystroke
classification.

We apply an additional layer of processing on top of
the CNN to improve results and take into account the
sequential nature of the problem, building out a recur-
rent neural network (RNN) architecture.Because RNNs
have the ability to learn order-dependent features, they
are naturally suited for text processing [22].
Our problem is different from typical natural lan-

guage processing because our input features are not
characters but rather character probabilities. Typically,
RNNs use one-hot-encoded vectors as inputs [12]; this
can be thought of instead as a 100% probability of a
certain character. Rather than use one-hot-encoded
vectors, we pass the softmax output of the CNN di-
rectly into the RNN. This allows us to take advantage
of every guess generated by the CNN—often the sec-
ond guess or the third guess generated by the CNN
are correct.
Our goal in using the RNN is that it can correct er-

rors made by the CNN. By analyzing the confusions
made by the CNN, we discovered that the CNN makes
a number of systematic errors. First, the CNN often
confuses keystrokes for frequent classes, for example
by mistaking infrequent letters such as z for frequent
letters such as e. Second, the CNN often confuses char-
acters that are physically close on the keyboard, for
example by mistaking r for t. Finally, the CNN often
confuses keys that are physically similar in size on the keyboard, such as backspace and enter. These observations
support the notion that the CNN learns a physical dynamics model of the keystrokes.

In addition to these confusions, an RNN that is aware of typical spelling and grammar conventions should be
able to correct "spelling mistakes" that occur when the CNNmakes incorrect guesses. For example, an output from
the CNN that reads "for exsmple" should be corrected to "for example". With the goal of correcting systematic
errors and spelling errors caused by the CNN, we use a translation architecture for the RNN. In this architecture,
the RNN takes a sequence of inputs (i.e., keystrokes), and then outputs another, possibly different length, sequence
(i.e., letters).

We choose to model the CNN decoding as a translation problem because error correction and translation share
many similar properties. Systematic errors, such as confusing keys that are physically close to each other, are
fundamentally translation tasks in that there is a direct mapping of input to output. Spelling errors are similarly
correctable by a translation architecture because translation requires learning the correct spelling of words and
frequent word orderings.

We base our RNN architecture on Google’s Neural Machine Translation (NMT) [36]. The model is essentially a
sequence-to-sequence model with an attention module. It is composed of three parts: the encoder, the decoder,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:9

and the attention module. At training time, the encoder is provided the source language text (CNN output) as
input and the decoder is provided the destination language text (true keystrokes). At prediction time, the CNN
output is input to the encoder and a special start sequence is input to the decoder. The output from the first step
of the decoder is iteratively given as input to the next step of the decoder until a special stop signal is generated.

Fig. 2. Layout of Recurrent Neural Network

After the output from the RNN is generated, the RNN output
and timing information are given as input into a number of dense
layers. For each keystroke, the timing information is simply how
long (number of windows) it has been since a key was pressed,
and how long it will be (number of windows) until the next key
is pressed. This timing information provides additional insight
into keystroke classification, because different keys have different
time signatures. Figure 2 shows the architecture of the RNN.
The Google NMT architecture offers a number of advantages

suited to our problem. First, the architecture can operate directly
on the character level rather than on the word level. This is a
requirement for our use-case because we cannot use a model that
operates on word embeddings as the CNN does not necessarily
output correctly spelled words. Second, the attention module en-
ables the architecture to learn long-term language dependencies.
This allows us to correct the spelling of one word using the cor-
rected spelling of another word, which is important for frequent
n-grams such as "next to" or "on top of". Finally, this architecture
has been shown to function well even when the computations
are rounded mathematically [36], making it suitable for use on an
embedded or mobile device. Thus, it is plausible that an attacker
could deploy the model in real-time applications.
Each block of NMT architecture is a long-short term memory

(LSTM) cell [9]. We use 5 LSTM layers in the encoder, 6 LSTM
layers in the decoder, and the attention module described in [19].
The bottom layer in the encoder is a bi-directional LSTM; the
bi-directionality allows the network to exploit any right-to-left
hierarchies present in the source language [31]. Additionally, the
LSTM layers are residually connected. With residual connections,
the input to the bottom layer is summed (element-wise) with the output from the bottom layer, and the sum is
used as input in the top layer. The residual connections allow for deep layering of LSTMs without the drawback
of the vanishing gradient problem [36], training the bottom layers and the top layers evenly.
Although the amount of text generated by the user varies, the RNN can only analyze a constant number

of letters at one given time (called the sequence length). For an input size of n letters and a sequence length
of s letters, we break the input text into n/s chunks and input these chunks sequentially to the RNN. Longer
sequence lengths allow the RNN to learn longer dependencies, but longer sequence lengths result in fewer training
examples because there are fewer chunks to process. We determined the sequence length by gridsearching values
from 6 to 18.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:10 • T. Giallanza et al.

4 DATA COLLECTION
To collect training and testing data, we designed an IRB-approved study with the goal of recording realistic typing
behavior. The data collection setup included one computer (2017 MacBook Pro), three different keyboards (built-in
laptop keyboard, Dell mechanical keyboard, and Bluetooth-connected Apple keyboard), and eight iPhones (one
iPhone 7, one iPhone 7 Plus, and six iPhone 5S models). The phones were laid out on a wooden conference table
in four different seating positions, with a phone on each side of the keyboard. All phones were placed in the same
location for all participants, and all phones were charged to 100% battery for the duration of the experiment.

4.1 Experimental Setup
We collected data in two different formats: demographic data and interview style. In demographic data sessions,
one participant fills out a survey that records demographic information including gender, age, keyboard experience,
etc. In interview style sessions, two participants engage in a conversation about a variety of topics ranging from
daily activities to political viewpoints. One participant takes on the role of “interviewer,” asking questions related
to pre-determined topics. The order of topics presented is randomized. As the other participant answers the
questions verbally, the interviewer types notes on the answers. Note that the interviewer does not type verbatim
what the interviewee speaks—rather, notes on the conversation are taken.

Participants are made aware that they are participating in a study designed to detect typing data from mobile
phone sensors and consent to the collection of their anonymized demographic data. Participants are instructed
to avoid touching or bumping the mobile phones, but no special instructions about typing style are given.
Participants are free to type in shorthand or full sentences, they are allowed to type at any speed, and they are
allowed to correct typos or leave them. Furthermore, participants are invited to speak and make non-verbal
noises freely, simulating realistic behavior and typical noise levels. Because only one participant is active at a
time, demographic data sessions often have little noise, whereas interview sessions are explicitly designed to
create noisy typing environments because one participant speaks while the other types.
Each individual randomly cycles among three different keyboards and two different seating locations at the

table — throughout the interview the participant physically switches keyboards and physically moves to a
different table location. Each person sits in each position with each keyboard for at least one topic. Thus the total
number of configurations for each session is: (2 participants) x (2 interviewer seating positions) x (2 interviewee
seating positions) x (3 keyboards) = 24 configurations per session. The mobile application, written using Swift for
iOS, records audio from the built-in bottom microphone and motion data including accelerometer and gyroscope.
Sampling rates for the sensors are 44.1 kHz for audio and 100 Hz for all motion data.

4.2 Demographics and Statistics
The data collection experiment consisted of 20 participants in 10 different sessions. Most participants were
recruited from a local mid-sized private university. Table 2a and Table 2b give the demographic information and
typing ability for the 20 recruited participants.
Table 2 shows the additional statistics we collected on our dataset. The statistics concerning typing speed

are of particular importance because they control how to segment keystrokes; the average typing speed is 340
characters per minute and the median time between keystrokes is 182.9ms with a standard deviation of 34.3ms
(Figure 3a). Further, only 3.4% of keystrokes occurred within 25ms of each other. This means that our windowing
strategy, which is accurate within 25ms , covers 96.6% of cases observed in the data.

Because our experiments encouraged natural typing styles, we observed a number of different scenarios that
increase the difficulty of keystroke prediction. First, there were a large number of keystroke overlaps, wherein
a second key is pressed down before the previous key is released. We found this overlap to happen in 29% of
keystrokes. Additionally, we discovered that more than half of the keystrokes for some typists are separated

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:11

Table 1. Demographics and Typing Ability of Study Participants

Gender (n, %) Male (11, 55%)
Female (9, 45%)

Age (µ,range) 23.6 (19-54)

Highest High School (5, 25%)

Education Associates (2, 10%)

(n, %) Bachelors (9, 45%)
Masters (4, 20%)

Social Status Married (1, 5%)
(n, %) Single (19, 95%)

Ethnicity (n, %) Hispanic (2, 10%)
Non-Hispanic (18, 90%)

Race (n, %)
White (17, 85%)
Asian (2, 10%)
Black (1, 5%)

Profession Student (11, 55%)

(n, %) Comp. Scientist (6, 30%),
Business Person (4, 20%)

(a) Demographics

Mac Users (n, %) 8 (40%)
Computer Use 28.4 (10 - 80)hrs/wk (µ (min,max))

Years using QWERTY 15.7 (0 - 25)keyboard (µ (min,max))
Self-evaluated typing 7.1 (± 3.5)rank (1-10, µ ± 1.96 · σ)

Typing class (n, %) 15 (75%)

Handedness (n, %) Left (2, 10%),
Right (18, 90%)

English as first 18 (90%)language (n, %)
Taken programming 16 (80%)class (n, %)

Hobby that affects
11 (55%)hand dexterity?

i.e., plays piano (n,%)
(b) Typing Ability

by less than 100ms . Related works assumed at least 100ms in between every keystroke [16, 20, 39], but, based
on our observations of natural typing behavior, we cannot make such a generous assumption (30% of observed
keystrokes in our dataset occurred within 100ms of each other).

We also discovered a limitation of our ground truth labeling process—the operating system limits the polling-
rate of external devices (the USB-connected and Bluetooth-connected keyboards). The polling is limited to once
every 15ms , meaning that sub-15ms precision is impossible for those keyboards.

We designed the interview style session to include audio noise, specifically in the form of talking. To understand
how frequently this talking overlapped with the sounds of keystrokes, we use long-term spectral divergence as a
voice activity detection algorithm, as proposed by Ramirez et al. [28]. We determined that at least one person was
talking during 42% of all logged keystrokes. We believe the large percentage of talking-noise mirrors the way an
actual eavesdropping attack might occur in a meeting scenario—with people talking while another person typed.

In natural typing behavior, some keys are pressed more frequently than others. In other research, participants
were forced to type the same key repeatedly, generating the same number of samples for every key [16, 39]. This
is not a realistic mirroring of actual typing. For example, “e”, and “t” occur frequently, but should not be given the
same consideration as the least frequently typed keys, “ALT”, “z”, and “q”. The most frequent key, “space,” was
typed 500 times more often than the least frequent key, “q”. This reveals that real typing behavior is heavily class
imbalanced. Figure 3b shows a histogram of how frequently each key was pressed.

5 RESULTS
We train and test a variety of models, both to determine the optimal hyper-parameters and to compare model
performance across different keyboards, positions, and inputs. We never train and test on data from the same
typist. This ensures results generalize between different typists and there is no need for calibration of the system
using person-specific training data. We use a total of 34 classes: each of the 26 letters, the space bar, the left

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:12 • T. Giallanza et al.

shift, the right shift, the enter key, punctuation, numbers, edit keys, and alt keys. We choose to combine certain
keystrokes into groups because they are infrequent in our dataset. That is, we combine all punctuation into one
class, all numbers into one class, and both alt keys into one class.

Table 2. Statistics of Data Collection Experiment

Dataset Size (raw data, time) 69 GB (19 hours)

Keystrokes Collected (n, %)
Survey (13087, 8.1%),
Interview (149207, 91.9%),
Total (162294, 100%)

Keystrokes by Keyboard (n, %)
Laptop (65804, 40.5%),
Mechanical (48291, 29.7%),
Bluetooth (48199, 29.7%)

Typing Speed (characters/min) median = 340.0 cpm (270 - 410)
Overlapping Keystrokes 28.5% (±25.1%)per Typist (µ%, 1.96 · σ)

Time Talking 46% (±7.8%)per Session (µ%, 1.96 · σ)
Time Typing 81% (±10.4%)per Session (µ%, 1.96 · σ)

Keystrokes per session with 41.8% (±10.4%)while talking (µ%, 1.96 · σ)

As a baseline, we compare the output
of our models to a majority classifier. We
report the keystroke-level accuracy for
the top guess, the accuracy for the top
5 guesses, and the precision. That is, we
report the accuracy calculated across all
classes, acc = (TP + TN)/(TP + TN +
FP + FN), and the precision, given by:
Precision =

∑
c∈Classes T Pc∑

c∈Classes T Pc+F Pc
Where TPc

and FPc are the true positives and false
positives for class c . We choose to report
this micro-averaged precision because it is
more sensitive to errors in frequent classes.

5.1 Keystroke Detection
First, we tested the keystroke detection
model individually. We trained and tested
on the entire dataset with 5-fold cross-
validation across participants and averaged
the results for each fold. Specifically, this
means we train on a cohort of 16 partici-
pants and test on the remaining 4 partici-
pants. Table 3 details the results of different inputs to the keystroke detection model. Since keystroke detection
only has two classes (key pressed vs key not pressed), we report the true positive rate and the true negative rate
rather than the accuracy and the micro-averaged true positive rate. The results reported here demonstrate the
ability of the model to detect when keystrokes occur. In a realistic scenario, the keystroke detection model would
never be used independently of the keystroke classification model. The remainder of the results reported are
generated from first training the keystroke detection model, then training the keystroke classification model. For
brevity, the best performing keystroke detection model (Motion Input) is used for the remainder of the results.

(a) Histogram of Time Between Keystrokes. (b) Frequency per Key (logarithmic scale).

Fig. 3. Histograms of Time Between Keystrokes and Frequency of Keystrokes.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:13

Table 3. Results for General Training, Averaged Across Testing Folds. TPR=True Positive Rate, TNR=True Negative Rate

Keystroke Classifier TPR TNR Accuracy, Top-1 Accuracy, Top-5 Precision
Majority Classifier 50% 50% 14.8% 38.9% 14.8%

CNN

Motion Input 87.5% 76.3% 16.2% 43.7% 38.8%
Audio Input 82.4% 74.1% 18.1% 44.9% 42.3%
FFT Input 82.8% 74.8% 21.3% 47.8% 44.1%

MFCC Input 74.1% 72.4% 26.3% 55.4% 48.3%
Combined Input 85.3% 74.9% 24.2% 53.7% 45.7%

RNN+CNN with MFCC – – 41.8% 70.6% 54.9%

We note that because the best true positive rate from the keystroke detector is 87.5%, the reported results in
remaining analyses always include about 12.5% error. Moreover, the remaining models must also classify any
false positives from the detector as not a key.

5.2 Keystroke Classification: General Training
For keystroke classification, we first trained and tested on the entire dataset. We used the same cross-validation
scheme as when testing keystroke detection. When reporting the RNN results, we use the best performing CNN
model as input features. Table 3 shows the results of different input combinations for the CNN as well as RNN.
Figure 4a demonstrates how the accuracy of the prediction changes with respect to the Top-N guesses. The results
reported here mirror how an attacker might perform if they did not know what style of keyboard was being used
or at which location someone was typing in a particular setting, and therefore trained a model generically using
multiple locations and multiple keyboards.
Table 3 separates out the results based on the features used. The motion and raw audio features perform no

better than majority classification. We hypothesize that motion only data is poor performing because of the
low sample rates (100 Hz per phone). For raw audio data, we hypothesize that the poor performance is due
to a lack of sufficient data to properly characterize the time-domain filters. Theoretically, CNNs in the time
domain can discover frequency-based features—however, this requires many times more data and deeper CNN
architectures [25]. Once we employ frequency based pre-processing to the input audio (i.e., FFTs and MFCCs),
marked improvements occur, with the MFCCs performing slightly better than the FFT-based features. Based on a
two tailed T-test for the different CNN architectures, the MFCC input CNN is statistically the best performer
with 95% confidence (p < 0.01). Interestingly, using only the MFCCs performed better than combining all the
different input features — we speculate that adding other features did not add considerable information that was
pertinent for classification.

After comparing the different CNN input configurations for the entire dataset, we selected the best performing
input configuration (MFCCs only) and performed a gridsearch to find the optimal sequence length for the
RNN. To conduct the gridsearch, we adopted a nested cross validation strategy across participants, using 80%
of the participants for training, 10% of the participants for selecting the optimal RNN sequence length, and the
remaining 10% of the participants for reporting results, repeating this process 10 times. Figure 4b shows the
average performance of the RNN models with respect to sequence length. These are also the results reported at
the bottom of Table 3. It is clear that the RNN adds considerable predictive capability to the model. For brevity in
the remainder of the results, we use the best performing CNN (MFCCs only) and RNN models.

We further examined how the number of phones used as input to our models affected classification accuracy.
Our experimental setup included a total of 8 devices: 2 devices are next to the keyboard at any given time, and the
other 6 are distributed around a table (as would be common in a meeting). We compared using 1 phone (adjacent

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:14 • T. Giallanza et al.

to the keyboard), 2 phones (both adjacent to the keyboard), 4 phones (the 4 phones closest to the keyboard), and
all 8 phones as inputs. Table 4 shows the performance of the models based on the number of input devices used.
Based on the results, using 4 phones performs the best, and using 8 phones performs slightly worse than

using 4 phones, though the difference is not statistically significant. We speculate that the slight decrease in
performance with 8 devices is due to added complexities in time synchronization and variation in microphone
quality. Because doubling the number of devices from 4 to 8 results in significantly longer training time and
added model complexity without improving model accuracy, we use 4 phones for the remainder of the results.

5.3 Keystroke Classification: Per Keyboard Training
Next, we split the data based on keyboard type. This scenario mirrors how an attacker might perform if they
knew the style of keyboard that a person used, but was not aware of where they would be located at the table.
For each of the three keyboard types used, we performed 5-fold cross-validation within the data collected for
that keyboard. Thus, this is only about 33% of the data used for general training. Table 5 shows the performance
of the models categorized by keyboard type. The results follow a similar trend to the general training results. The

(a) Prediction Accuracy for Varying N. (b) RNN Accuracy for Different Sequence Lengths.

Fig. 4. Top-N character level accuracy for CNN and RNN under different configurations.

Table 4. Results by Number of Devices

Number of Phones Model Accuracy, Top 1 Accuracy, Top 5 Precision

1 Phone
Majority Class 14.8% 38.9% 14.8%

CNN 19.8% 43.9% 34.1%
RNN 30.5% 56.3% 47.3%

2 Phones
Majority Class 14.8% 38.9% 14.8%

CNN 24.2% 53.6% 44.1%
RNN 38.2% 67.2% 51.4%

4 Phones
Majority Class 14.8% 38.9% 14.8%

CNN 26.3% 55.4% 48.3%
RNN 41.8% 70.6% 54.9%

8 Phones
Majority Class 14.8% 38.9% 14.8%

CNN 25.2% 52.9% 46.8%
RNN 40.1% 67.5% 52.1%

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:15

Table 5. Results for Keyboard Training

Keyboard Type Model Accuracy, Top 1 Accuracy, Top 5 Precision

Laptop, Capacitive
Majority Class 14.4% 38.5% 14.4%

CNN 28.2% 57.6% 51.1%
RNN 43.2% 70.2% 57.4%

USB, Mechanical
Majority Class 15.0% 39.5% 15.0%

CNN 27.4% 55.8% 49.1%
RNN 38.3% 69.9% 56.6%

Bluetooth, Capacitive
Majority Class 14.7% 39.0% 14.7%

CNN 19.8% 46.3% 48.3%
RNN 33.4% 64.3% 48.4%

laptop and mechanical keyboards perform similarly. However, it is clear that the bluetooth capacitive keyboard
performs noticeably worse.

5.4 Keystroke Classification: Per Position Training
Finally, we split the data based on where the typist was sitting. This scenario mirrors how an attacker might
perform if they knew where they would be located at the table but was not aware of the style of keyboard that
a person used. For each location, we performed 5-fold cross-validation for each position at which a typist sat.
Because we used two locations, each cross validation uses about 50% of data compared to general training. Table
6 shows the performance of the models categorized by typist location. The results for each location are about
the same as in the general training scenarios. Thus we conclude that knowing position of the keyboard is not
particularly advantageous to an attacker.

5.5 Word-Level Accuracy
In a realistic attack scenario, the goal is to gather intelligible text rather than individual keystrokes. Thus, we
deployed a basic language model to transform the keystroke-level predictions into word-level predictions.

First, we gathered the keystroke-level predictions from our RNN sequence classifier. To eliminate low confidence
keys, we selected the top n highest confidence guesses for each keystroke. We investigate a number of values for
n (reported below). Next, we segmented the keystrokes into words. We employed two competing methods for
word segmentation: a whitespace method and a windowing method. For the whitespace method, we segmented
the keystrokes into words wherever the model guessed the “space” key or “enter” key. This model assumes high
confidence in whitespace classification. For the windowing method, we tried all combinations of keystrokes in a
fixed-sized window. After finding the highest scoring beginning word, we shifted the window over by the length

Table 6. Results for Position Training

Position Model Accuracy, Top 1 Accuracy, Top 5 Precision

Position A
Majority Class 14.4% 38.5% 14.4%

CNN 26.5% 51.5% 44.7%
RNN 39.5% 69.3% 54.8%

Position B
Majority Class 14.5% 37.8% 14.5%

CNN 27.1% 53.2% 45.7%
RNN 40.2% 69.8% 54.9%

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:16 • T. Giallanza et al.

of that word. This method is more forgiving if the classifier does not perfectly find whitespace in the keystrokes.
Thus, we hypothesized this model might be biased to select short, common words because of their frequency.

Table 7. Methods Used for Word Scoring.

Sum Method score =
∑
Pchar

Log Sum Method score =
∑
log(Pchar)

Normalized Method score =
1
L

L∑
log(Pchar)

After word segmentation, we removed any words
that did not appear in our dictionary (we formed the
dictionary from the words typed by participants in
our study; this limitation is discussed in next section).
We then scored each remaining word using compet-
ing methods. Table 7 details the scoring methods we
tested, where Pchar is the confidence score for a given
keystroke. Based on the scores for the various possi-
ble words, we chose the highest scoring word as the
word-level prediction of our model. Figure 5a shows a comparison of the different models with varying thresholds
for n.
Based on the results, the top performing model uses windowing for word segmentation, normalized word

scoring, and a threshold of n = 5 letters from the RNN. We further examine the performance of this model by
analyzing the Top-N word prediction accuracy. That is, what percentage of the actual typed words are in the top
N guessed words from the model. Figure 5b shows this model for varying word guesses, ranging from about 27%
accuracy for Top-1 words to 38% accuracy for the top 10 words.

6 VULNERABILITY ANALYSIS
While the models from previous analysis perform well, it is unclear what an attacker must do to achieve this
level of performance. For instance, can a model built from data collected on a particular tabletop transfer to
another type of tabletop? Can data from a particular keyboard generalize to a similar keyboard? These questions
are critical to understanding what level of proficiency an attacker requires to carry out a successful keyboard
snooping attack. To mirror a realistic attack scenario, we developed a real-time system that used input data from
surrounding phones and provided a prediction of the typed phrases. The pre-trained machine learning models
were created from our existing dataset and deployed on a server. This allowed us to collect new typing data in an
online machine learning system and test the performance over a variety of live scenarios. For testing the online
system, a single typist (not included in the training data) typed a known paragraph containing 85 words and 443
characters. We collected new typing data while varying a number of additional parameters including the tabletop
and the location of the phones. For each trial one parameter was changed while the rest were kept constant. We
report the results of the online system over five trials for each set of parameters.

6.1 Room Variation
In the first trial we varied the room the participant typed in, while keeping the tabletop typed upon identical to
the tabletop where training data was collected. Table 8 shows the performance based on the room. The results
indicate that varying the room has an impact on model accuracy, but not a detrimental one. It is unsurprising
that the room effects the accuracy of the model because each room has different acoustic characteristics that
influence how the audio from the keystrokes reaches the phone microphone. However, the source-filter model
analogy speculates that the tabletop is the primary filtering process. Thus, changing the room but maintaining
the same tabletop yields small changes in the model accuracy. We conclude that it is not critical for an attacker to
gain access to the specific room to launch a successful attack.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:17

(a) Comparison of Word-Level Accuracy for Different Methods (b) Word-Level accuracy for Varying Top Word Guesses

Fig. 5. Word level accuracy under various language model configurations and for Top-N predictions.

Table 8. Results for Varying Rooms

Room Model Character Accuracy Word Accuracy Word Accuracy, Top-5

Original Room RNN 39.5% 14.1% 27.1%
Language Model 32.3% 25.9% 32.9%

New Room RNN 34.2% 12.9% 24.7%
Language Model 27.8% 21.4% 28.3%

6.2 Table Variation
In the second trial we varied the tabletop the participant typed on. We compared the results from the original
wooden tabletop to two new tabletops: one made of a composite faux-wood and one made of metal (in the
style of a lab table). Table 9 shows the performance based on the tabletop. The results indicate that varying the
tabletop has a significant impact on model accuracy. In particular, the results for the metal tabletop are worse
than the results for the composite tabletop. Using our source-filter model we hypothesize that these results
are due to the different transfer functions of the different materials. Because the metal tabletop is extremely
different from the original wooden tabletop (the material is entirely different and the thickness of the tabletop
is dramatically different) but the composite tabletop is somewhat similar to the original wooden tabletop (the
material is similar and thickness is the same), the results are consistent with the source-filter model. We conclude
that prior knowledge of the tabletop surface material is critical to a successful attack at the present and an
attacker requires this knowledge. It is possible that a model trained on data from multiple tabletops will be able to
overcome this obstacle, or that a different model could be trained for each type of tabletop, but the current results
indicate that a model trained on data from one type of tabletop cannot generalize to other types of tabletops.

6.3 Phone Location Variation
Next, we varied the phone location and number of phones used, keeping constant the table, room, and keyboard.
We compared the results from the original phone locations to two new phone locations: systematically shifted and
randomly shifted. In the systematically shifted scenario, every phone is moved 1 inch horizontally further from
the keyboard than the original location and tilted 15 degrees counterclockwise from the original location. The
systematically shifted location is designed to test the resilience of the model to minute changes in phone position.
In the randomly shifted scenario, every phone is moved between 1-3 inches horizontally further from the keyboard

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:18 • T. Giallanza et al.

Table 9. Results for Varying Tables

Table Model Character Accuracy Word Accuracy Word Accuracy, Top-5

Original Table RNN 39.5% 14.1% 27.1%
Language Model 32.2% 25.9% 32.9%

Composite Table RNN 18.7% 7.1% 10.6%
Language Model 15.9% 8.2% 15.3%

Metal Table RNN 16.9% 1.2% 3.4%
Language Model 13.2% 2.4% 5.9%

Table 10. Results for Varying Phone Locations

Location Phones Model Char. Accuracy Word Accuracy Word Accuracy, Top-5

Original
2 Phones RNN 37.7% 12.6% 26.2%

Lang. Model 31.6% 24.2% 30.3%

4 Phones RNN 42.0% 14.5% 27.6%
Lang. Model 32.6% 24.5% 31.6%

2 Phones RNN 34.6% 9.8% 23.9%
Systematically Lang. Model 30.0% 20.2% 27.7%

Shifted 4 Phones RNN 36.7% 10.9% 24.3%
Lang. Model 29.5% 20.6% 28.4%

2 Phones RNN 30.7% 7.9% 18.5%
Randomly Lang. Model 24.8% 17.3% 24.8%
Shifted 4 Phones RNN 31.6% 9.8% 22.5%

Lang. Model 22.8% 18.2% 25.3%

than the original location, and tilted 5-20 degrees clockwise or counterclockwise from the original location. The
randomly shifted location is designed to emulate a more realistic attack scenario, such as eavesdropping on a
meeting, wherein phones are casually strewn on the table in random locations and orientations.
Table 10 shows the performance of the three different locations using two phones and four phones. The

results indicate that phone location does impact model accuracy, but not dramatically so. Unsurprisingly, the
systematically shifted scenario yields better performance than the randomly shifted scenario, presumably because
the difference from the original phone locations is smaller. It is also worth noting that varying the location of the
phones degrades model performance more when more phones are present; varying the location affected the four
phone setup more than the two phone setup. We speculate that this is due to the fact that the two additional
phones added in the four phone setup are already far from the keyboard. Because these phones are farther away,
they are more sensitive to increases in noise and benefit from being aimed more directly at the keyboard. Because
the two primary phones are so close to the keyboard, varying the orientation is less impactful. We conclude that
phone location is helpful for an attacker to know, but not critical to a successful attack.

6.4 Keyboard Variation
Finally, we varied the keyboard typed on, keeping constant the number and location of phones used and the
table. We compared the results from the original laptop keyboard to two new keyboards: a laptop keyboard and
an ergonomic keyboard. The new laptop used was a different model from the original laptop, but used the same
chiclet style keyboard. The ergonomic keyboard differed from all of the keyboards seen in the training data: it is

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:19

split down the middle such that there is a sizable gap between the left-hand and right-hand sides of the keyboard.
Table 11 summarizes the performance of the model on the three different keyboards. The results indicate that
the model has some difficulty generalizing to the new laptop keyboard and considerable difficulty generalizing
to the new ergonomic keyboard. These results are unsurprising for a number of reasons. First, the new laptop
keyboard uses the same style of keys as the old laptop keyboard, so it is similar, but the size of the keyboard
and the resistance of the keys are both slightly different. The ergonomic keyboard, on the other hand, is entirely
different from the keyboards used in the training data. The location of each key on the keyboard is an important
factor for the model, and these locations are altered drastically by the unconventional layout of this keyboard.
We conclude that an attacker can achieve success if they have knowledge of the general style of keyboard.

7 DISCUSSION
We had a number of different goals in testing different models. In particular, we wanted to determine which
inputs yield the best convolutional output; whether or not the recurrent network improved on the convolutional
output; how changing the keyboard model and the typist location effected results; and how well our best model
performs on the word-level.
Based on the results from general training on the entire dataset, the MFCCs are the best input to the convo-

lutional neural network. We observed that MFCC processed audio performed better than FFT processed audio,
which in turn performed better than unprocessed raw audio. This indicates that inputs perform better using
traditional pre-processing. Considering that MFCCs were designed for speech recognition rather than keystroke
detection, it is possible that, with more data and more training, the network could extract features from raw or
FFT processed audio that are even more relevant to keystroke detection than MFCCs.
We further found, via gridsearch, that an RNN with a sequence length of 11 performed the best. We found

that the accuracy of the RNN first increases, then decreases for larger sequence lengths. We speculate that the
accuracy increases because longer sequence lengths allow the RNN to uncover longer-term dependencies in the
text. Eleven keystrokes, the optimal sequence length we found, is large enough to encompass multiple words,
allowing the RNN to learn frequent n-grams. The decrease in accuracy for larger sequence length is likely due to
available training data. Larger sequence lengths require more data for proper training, and (when not overlapping)
reduce the number of total sequences to train the network. The best performing RNN with a sequence length
of 11 improved the CNN results from 26.3% accuracy to 41.8% accuracy. It is clear from the magnitude of this
improvement that using the RNN is worth the additional training time and model complexity. With more data, it
is possible that a larger sequence length could be used with even better results.
Additionally, the best performing CNN/RNN combination combines input signals from 4 different mobile

devices. Prediction accuracy decreased dramatically when using fewer devices, indicating that an attacker will
have much better results by using an array of devices. These findings thus suggest that keyboard snooping is a
more realistic attack in settings that involve multiple mobile devices, such as meetings.

Table 11. Results for Varying Keyboards

Keyboard Model Character Accuracy Word Accuracy Word Accuracy, Top-5

Original Laptop RNN 42.2% 15.1% 28.0%
Language Model 32.8% 25.0% 30.9%

New Laptop RNN 30.8% 11.2% 26.3%
Language Model 26.5% 19.4% 25.3%

Ergonomic RNN 14.8% 3.9% 12.6%
Language Model 12.2% 8.9% 15.2%

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

45:20 • T. Giallanza et al.

By splitting the data based on keyboard type we observed that the laptop keyboard is most vulnerable to
attack whereas the bluetooth keyboard is least vulnerable. Even so, the RNN is able to achieve 28% typing
accuracy, indicating that using a sound dampening keyboard can help to mitigate the likelihood of a successful
eavesdropping attack, but does not guarantee that the attack will fail. These results are consistent with our
source-filter model considering the greater amount of dampening employed by the bluetooth keyboard.

Splitting the data based on typist position yielding similar results to training and testing irrespective of position;
thus, we cannot confidently say that varying the position of the typist affects model accuracy. This indicates that
the model is able to generalize to different typist positions.

Finally, we investigated the accuracy of our model at the word level. We tested using the top n predictions from
the recurrent neural network for varying n, two different word segmentation methods, and three different word
scoring methods, achieving 26.7% accuracy in the best case. We achieved this accuracy score by using a dictionary
constructed from words typed during our experiment (a vocabulary size of around 15,000 words), which may or
may not be feasible in a realistic attack scenario. We did not restrict our typists to a known vocabulary, but did
suggest topics for discussion, leading many of our participants to use similar keywords. In situations where the
attacker can guess at which keywords might be typed, an attacker can feasibly achieve similar accuracy to this
study. When using an unrestricted vocabulary of English words, the word level accuracy drops to 19.4%, which is
still reasonably accurate. Note: this accuracy is somewhat arbitrarily low because many typists had typographical
word errors, which are not recoverable using a standard dictionary.

For varying n, the best result did not occur with the largest n value. Rather, as n increased, the word-level
accuracy first increased, then decreased (see Figure 5a). We hypothesize that this is caused by mistakes arising
for increasing n. For low n values, all possible keystrokes generated by the model are high confidence. For higher
n, the model returns lower confidence guesses. When these bad guesses are considered, the accuracy decreases
because the model by chance alone guesses a word that is in the dictionary but is not the correct word.
For varying segmentation and scoring methods, we found the best results using windowed segmentation

and normalized word scoring. Using the windowed segmentation, we are better able to search for all possible
words. The whitespace method is limited because if the model miss-predicted where the space occurs, the word
segmentation will fail. Although the windowed method requires greater resources and longer runtime, this added
complexity appears to be justified because windowed segmentation outperforms whitespace segmentation by
nearly 6% word accuracy overall (Figure 5a).
The real-time analysis of the system revealed a number of key insights into the requirements of a successful

attack. We discovered that an attacker requires considerable knowledge of the table, as well as some knowledge
about the style of keyboard, while the location of the phones and the room configuration is less critical. Through
this analysis, we conclude that keyboard snooping attacks are only a threat to skilled attackers that have knowledge
about the setup before hand. This greatly limits the feasibility of the attack not only because the attacker needs
knowledge about the table and keyboard beforehand, but also because the attacker must have the requisite skills
for processing and deploying a new machine learning model. It is foreseeable that these disadvantages could be
mitigated through additional data collection or through additional pre-processing techniques. However, such
techniques would require a sophisticated attacker to carry out.

8 LIMITATIONS AND FUTURE WORK
The real-time analysis of the system revealed that the current model has great difficulty generalizing to different
tables. It is possible that using a larger set of training data, one that includes multiple tables and rooms, could
result in a model that can generalize to different setups more easily. Furthermore, both the real-time analysis and
the primary data collection included few users. A larger set of training data in the future would benefit from
increasing the number of users, particularly for the real-time analysis.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

Keyboard Snooping from Mobile Phone Arrays with Mixed Convolutional and Recurrent... • 45:21

Though we achieve keystroke accuracy of 41%, it is unlikely that the approach presented here could be used
for snooping passwords. This is because the recurrent network takes advantages of common phrases and letter
sequences that are typically lacking in strong passwords, so we anticipate that predicting a password would have
an accuracy more similar to the CNN model, where about 28% of keystrokes are correct. We assume this accuracy
is not sufficient for successful password snooping. It may be possible, however, to reduce the search space of
possible passwords with our model, though we have not investigated such a vulnerability in this paper.

Finally, future work could investigate the performance benefit of typist and/or keyboard specific models. In our
experiments we did not take advantage of similar typists. For example, some of our participants were experienced
touch typists, whereas others were inexperienced and used the hunt-and-peck method. Future studies with more
participants could take advantage of these groups by training and testing on different typists within the same
typist group, creating group-specific models. Furthermore, we observed varied model performance across the
three different keyboard types used in data collection. As per our independent source-filter model, each type of
keyboard could be considered a different type of source. Our experiments demonstrate that training one model
on data from multiple keyboard types is sufficient, but it is possible that training keyboard-specific models could
result in better performance.

9 CONCLUSION
We developed a system that uses sensor data from mobile devices to determine what keys were pressed on a
nearby keyboard. In an IRB-approved human subject experiment that involved 20 participants typing over 160,000
characters, we achieved 41.8% accuracy at the keystroke level and 26.7% accuracy at the word-level by using
MFCC-processed audio data. Our model generalized to different participants, different keyboards, and different
locations. We achieved this accuracy on unconstrained typing data in a noisy environment with commercial
smartphone sensors, demonstrating the feasibility of this attack in a realistic setting. However, through building
a prototype system, we also highlighted the limitations of the system to data collected outside of a specific room
or table, and on a different style keyboards, limiting the practicality of such an attack to sophisticated personnel.

REFERENCES
[1] Apple developer documentation: mach-absolute-time. https://developer.apple.com/documentation/kernel/1462446-mach_absolute_time.

Accessed: 2018-07-01.
[2] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong Yu. Convolutional neural networks for

speech recognition. IEEE/ACM Transactions on audio, speech, and language processing, 22(10):1533–1545, 2014.
[3] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad Shahzad. Keystroke recognition using wifi signals. In Proceedings of the 21st Annual

International Conference on Mobile Computing and Networking, pages 90–102. ACM, 2015.
[4] Liang Cai and Hao Chen. Touchlogger: inferring keystrokes on touch screen from smartphone motion. In Proceedings of the 6th USENIX

conference on Hot topics in security, pages 9–9. USENIX Association, 2011.
[5] Liang Cai and Hao Chen. On the practicality of motion based keystroke inference attack. In International Conference on Trust and

Trustworthy Computing, pages 273–290. Springer, 2012.
[6] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural networks with multitask

learning. In Proceedings of the 25th international conference on Machine learning, pages 160–167. ACM, 2008.
[7] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning for speech recognition and related

applications: An overview. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 8599–8603.
IEEE, 2013.

[8] Gunnar Fant. Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations. Number 2. Walter de
Gruyter, 1970.

[9] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm. 1999.
[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015.
[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings of the fourteenth international

conference on artificial intelligence and statistics, pages 315–323, 2011.
[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press Cambridge, 2016.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

https://developer.apple.com/documentation/kernel/1462446-mach_absolute_time

45:22 • T. Giallanza et al.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016.

[14] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures for matching natural language
sentences. In Advances in neural information processing systems, pages 2042–2050, 2014.

[15] Biing-Hwang Juang, L Rabiner, and JG Wilpon. On the use of bandpass liftering in speech recognition. In Acoustics, Speech, and Signal
Processing, IEEE International Conference on ICASSP’86., volume 11, pages 765–768. IEEE, 1986.

[16] Andrew Kelly. Cracking passwords using keyboard acoustics and language modeling.
[17] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. When good becomes evil: Keystroke inference with smartwatch. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 1273–1285. ACM, 2015.
[18] Chris Xiaoxuan Lu, Bowen Du, Hongkai Wen, Sen Wang, Andrew Markham, Ivan Martinovic, Yiran Shen, and Niki Trigoni. Snoopy:

Sniffing your smartwatch passwords via deep sequence learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 1(4):152, 2018.

[19] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based neural machine translation. arXiv
preprint arXiv:1508.04025, 2015.

[20] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor. (sp) iphone: decoding vibrations from nearby keyboards using
mobile phone accelerometers. In Proceedings of the 18th ACM conference on Computer and communications security, pages 551–562. ACM,
2011.

[21] Maryam Mehrnezhad, Ehsan Toreini, Siamak F Shahandashti, and Feng Hao. Stealing pins via mobile sensors: actual risk versus user
perception. International Journal of Information Security, 17(3):291–313, 2018.

[22] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent neural network based language model.
In Eleventh Annual Conference of the International Speech Communication Association, 2010.

[23] David L Mills. Internet time synchronization: the network time protocol. IEEE Transactions on communications, 39(10):1482–1493, 1991.
[24] Ben Milner. A comparison of front-end configurations for robust speech recognition. In Acoustics, Speech, and Signal Processing (ICASSP),

2002 IEEE International Conference on, volume 1, pages I–797. IEEE, 2002.
[25] Abdel-rahman Mohamed. Deep neural network acoustic models for asr. PhD thesis, 2014.
[26] Lindasalwa Muda, Mumtaj Begam, and Irraivan Elamvazuthi. Voice recognition algorithms using mel frequency cepstral coefficient

(mfcc) and dynamic time warping (dtw) techniques. arXiv preprint arXiv:1003.4083, 2010.
[27] Alan V Oppenheim and Ronald W Schafer. Discrete-time signal processing. Pearson Education, 2014.
[28] Javier Ram i rez, Jos e C Segura, Carmen Ben i tez, Angel De La Torre, and Antonio Rubio. Efficient voice activity detection algorithms

using long-term speech information. speech communication, 42(3-4).
[29] Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, and Vijay Pande. Massively multitask networks for

drug discovery. arXiv preprint arXiv:1502.02072, 2015.
[30] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling operations in convolutional architectures for object

recognition. In Artificial Neural Networks–ICANN 2010, pages 92–101. Springer, 2010.
[31] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,

1997.
[32] Laurent Simon and Ross Anderson. Pin skimmer: Inferring pins through the camera and microphone. In Proceedings of the Third ACM

workshop on Security and privacy in smartphones & mobile devices, pages 67–78. ACM, 2013.
[33] Laurent Simon, Wenduan Xu, and Ross Anderson. DonâĂŹt interrupt me while i type: Inferring text entered through gesture typing on

android keyboards. Proceedings on Privacy Enhancing Technologies, 2016(3):136–154, 2016.
[34] Fikret Sivrikaya and Bülent Yener. Time synchronization in sensor networks: a survey. IEEE network, 18(4):45–50, 2004.
[35] Peter Welch. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short,

modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2):70–73, 1967.
[36] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,

Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[37] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring user inputs on smartphone touchscreens using on-board motion sensors. In
Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks, pages 113–124. ACM, 2012.

[38] Tuo Yu, Haiming Jin, and Klara Nahrstedt. Writinghacker: audio based eavesdropping of handwriting via mobile devices. In Proceedings
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 463–473. ACM, 2016.

[39] Li Zhuang, Feng Zhou, and J D. Tygar. Keyboard acoustic emanations revisited. 13, 01 2009.

Received November 2018; revised February 2019; accepted April 2019

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 45. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Eavesdropping Attacks
	2.2 Keystroke Detection

	3 System Design
	3.1 Data Preprocessing
	3.2 Windowing
	3.3 Feature Extraction
	3.4 Keystroke Detection
	3.5 Keystroke Classification: Convolutional Neural Network
	3.6 Keystroke Classification: Recurrent Neural Network

	4 Data Collection
	4.1 Experimental Setup
	4.2 Demographics and Statistics

	5 Results
	5.1 Keystroke Detection
	5.2 Keystroke Classification: General Training
	5.3 Keystroke Classification: Per Keyboard Training
	5.4 Keystroke Classification: Per Position Training
	5.5 Word-Level Accuracy

	6 Vulnerability Analysis
	6.1 Room Variation
	6.2 Table Variation
	6.3 Phone Location Variation
	6.4 Keyboard Variation

	7 Discussion
	8 Limitations and Future Work
	9 Conclusion
	References

